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INTRODUCTION 

 
Henry Marion Howe was one of the first to apply modern scientific methods to improve understanding of the art of steelmaking.  
After spending hours carefully observing details of plant operation, he was not afraid to express controversial opinions, and he created 
ideas that had practical impact on real steelmaking and casting processes.  In the same spirit as Howe’s thought-provoking landmark 
paper in 1875 entitled “What is Steel”,1 this paper asks the questions: “What is a model?”, “What is model implementation?”, and 
“Why model?” and offers opinions based on examples taken from the author’s experience in modeling the continuous casting of steel 
and related processes.   
 

WHAT IS A MODEL? 
 
A model is a set of mathematical equations and constants which takes input data and outputs quantitative predictions which can be 
tested with observations in the real world, as shown in Figure 1.   
 

Equations and ConstantsInput
Data

Output
Data  

 
Figure 1.  Definition of a process model 

 
Kepler’s Law 

Taking an example from Howe’s era before computers, Kepler’s third law of planetary motion in 1619 is a model that takes as input, 
the distance of a planet from the sun, and outputs its orbital period (or year).    

 
 P = R3/2 (1) 
Where:  P= orbital period (earth years) 
 R= distance from Sun (earth radii) 
 
After calibrating this equation by choosing units to match Earth’s year, this model can predict the year of any planet or object orbiting 
in our solar system.  Taking Mars, for example: inputting R=1.52 gives P=1.88 Earth years.  These predictions match very well with 
astronomical measurements.  In fact, its accuracy is taken so much for granted that published predictions from this model are accepted 
as fact.  Note, however, that its prediction for Pluto of 248 Earth years has never been measured, as it has traveled less than 1/3 of an 
orbit since its discovery in 1930. 
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Shell Growth Equation 

It is important to emphasize that a model includes both the equation and its constants.  Taking an example of a process model closer to 
steelmaking, the shell growth equation is given as: 

 s k t=  (2) 
where  s =  shell thickness (inches); k = solidification constant (~1 in.-min-0.5);  
 t  = time below meniscus (min) = distance below meniscus (in.) / casting speed (in./min) 
 
This simple, but powerful equation is the foundation of caster design.  It is commonly used to find the maximum casting speed to 
avoid letting the molten core extend beyond the metallurgical length, or final solidification point.  Although it is reasonable for simple 
design purposes, the solidification constant, k, varies somewhat with casting conditions such as spray cooling rate.  It is important to 
note that the accuracy of this model depends on finding a good value for k.  Furthermore, a different value of k is needed to predict 
shell thickness at mold exit, than to predict metallurgical length.  A k fit to one caster might not be accurate somewhere else.  Thus, 
empirical constants, such as k, can only be used with the original equation and conditions used to find them.   
 
Types of Models 

Models can be classified in several ways.  First, every model falls in a spectrum between fundamental and empirical.  Fundamental 
models, such as Kepler’s law, are solutions of mechanistic equations based on accepted theory, so can be extended reliably to far 
beyond their proven range.  At the other extreme, empirical models are curve-fits of measured data which are only accurate over the 
limited range of input conditions where they have been calibrated with measurements.  Although it does have a theoretical basis, the 
shell growth equation is an example of a mainly-empirical model.   
 
Secondly, models can be classified according to the complexity of their solution method.  Analytical solutions, such as the two 
examples given above, are closed-form solutions of mathematical equations which are easy to evaluate and to see trends.  
Computational models solve complex systems of differential equations by discretizing them into small regions where simple 
approximations can be made.  They are based on mechanistic natural laws which (hopefully) govern the phenomena of interest.  These 
laws include the equations governing the conservation and transport of mass, momentum, mechanical force, electromagnetic force and 
energy, in addition to thermodynamics, phase equilibria, kinetics, and other relations.  Experimental data are incorporated in their 
most fundamental form, through the material properties.  Note that general-purpose software packages are not models, but they serve 
as useful frameworks for model development by providing us tools for solving the equations.  By definition, models require a 
combination of mathematics and experimental measurements.  Owing to the tremendous complexity of real processes, only a tiny 
fraction of the relevant phenomena can be modeled at one time.  Thus, the accuracy of the best computational models will always be 
limited by the power of available computers. 
 
Finally, models can be classified according to how they are implemented to benefit industrial practice. 
 
 

WHAT IS MODEL IMPLEMENTATION? 
 
Mathematical process models can be applied in many different ways to serve industry by inducing beneficial changes to process 
operation, which Figure 2 aims to illustrate.  The aim of industry is to make a profit by processing products.  Two ways to help the 
steel industry to do this is to improve product quality and to reduce production cost.  Thus, a reasonable modeling objective is to 
minimize some defect by specifying achievable changes to individual processes.  The model has not been implemented until this 
tangible change has taken place in the plant 
 
Changes can be classified according to the variables affected and the time needed to change them.  “Design variables” are difficult to 
change, and the target audience is usually the builder of the plant or vessel.  Standard operating practice, or “SOP” variables, refer to 
the set points of process variables that are relatively easy to change in an existing process.  “Control variables” change rapidly with 
time to accommodate variations in input conditions (both accidental and intentional).   
 
The different paths to model implementation have different model requirements.  Literature models and offline models create new 
understanding, and are implemented when process engineers make the changes.  Semi-online and online models implement change 
directly by running at the plant. 
 
Literature Models 

The traditional method to effect beneficial changes in plant operation is for process engineers to gain knowledge from previous 
literature, and to specify changes to SOP.  Much of that literature may report results from computational models, or “literature 
models”.  Literature models can apply the most sophisticated computational simulations of coupled phenomena in three-dimensions, 
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as they can afford the luxury of long computing times.  Because the modeler never contacts the process directly, the understanding 
must be imparted through clear presentation.  To be effective, the results of parametric studies must be presented in graphical form; or 
as a simple curve-fit equation, regardless of whether they originate from models or experiments.  To enable implementation, the best 
graphs plot “something you care about” on the “y” axis as a function of “something you can control” on the x axis.  With online 
publications, video animations add an another valuable dimension of insight to the communication of literature model results.   
 
Offline Models 

Off-line models are used by process engineers, designers, researchers, and others in the plant to gain personal insights and 
understanding about a process.  Model results are implemented according with the user’s personal knowledge, obtained from all 
sources, including also the plant, pilot-plant, physical model, laboratory experiments, and previous literature.  Decisions should be 
rooted in process understanding in order to avoid expensive trial and error that can result from plant experiments alone (see ? in Figure 
2).  Like literature models, offline models must be fundamentally-based and quantitative in order to accurately explore new 
conditions.  Numerical experiments with a user-friendly offline model is a powerful tool to optimize a particular operation. 
 
Semi-Online Models 

A semi-online model typically runs on a stand-alone computer at the operator’s desk.  The operator uses it as an on-the-spot decision-
making tool, while is used to make process changes with the aid of human judgment.  Typical examples in steelmaking include 
determining the optimum amounts of each alloy addition to charge to a furnace or ladle, or when to tap a heat.  In continuous casting, 
an accurate semi-online solidification model can serve as a tool to help the operator trouble-shoot the cause of a cracking problem. 
The start of an internal crack might indicate the location down the caster of a misaligned roll or spray nozzle that was responsible.   
 
Fully-Online Models 

Fully-online models represent the pinnacle of model implementation, as the model resides in the plant computer-control system and 
implements change on a continuous basis.  Input data comes directly from the system, which has access to the relevant real-time 
sensor signals.  Examples in continuous casting include level control systems and breakout detection systems.  These models must be 
extremely fast (to run in real time) and robust (to produce reasonable output for any input condition, including signals from bad 
sensors).  These needs traditionally require a model that is extremely simple, consisting only of a few basic equations and logic 
statements.  Accurate results are needed over only a limited range of operating conditions, so fast empirical models are well-suited to 
online applications.    

?
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Figure 2.  Flow chart for the implementation of process models in industry2 
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BACKGROUND 

Early Process Models 

The first “computers” were rooms full of humans doing hand calculations and passing notes.  Models using digital computers have 
their roots in finite-element analysis for the aerospace industry in the 1950s, and pioneered by Zienkiewicz.3  They were adopted into 
other fields including steel processing during the 1960s and 1970s, and have been growing exponentially ever since.  Those 
responsible are too numerous to mention here, and include many previous Howe lecturers.  Julian Szekely is noteworthy as the most 
prolific early modeler, who demonstrated the first heat transfer and computational fluid dynamics models of many different steel 
processes.  While foreshadowing the wide range of applications common today, these early attempts suffered from computer 
limitations.  Mizikar4 and Brimacombe5 pioneered the first finite-difference models of shell solidification.  These models solve the 
following transient heat conduction equation, subject to carefully-chosen boundary conditions, by following a transverse slice though 
the shell as travels downward at the casting speed (Figure 3).   

  H k T
t

∂ρ = ∇ • ∇
∂

 (3) 

where:  ρ= density (kg/m3), H = enthalpy (J/m3), t = time (s), k = thermal conductivity, and T = temperature (oC). 
 
Figure 46 shows typical results from such a model, with shell growth profile on the left and surface temperature on the right.  
Brimacombe championed the crucial knowledge-creation practice of combining experiments and models together: forcing the models 
to match reality through calibration and validation.  For example, Figure 46 also includes a simulation (line A) to compare with an 
analytical solution7 using the integral profile method (line C).  More significantly, this figure also contains data points to compare the 
predictions (line B) with shell thickness measurements (points).  The pioneering spirit for model validation in these early days is 
perhaps best epitomized by how these measurements were obtained:  by injecting radioactive gold tracer into the mold of an operating 
steel caster.  After validation, this particular model8 is more accurate than Eq. (2), and was applied with success to predict: 
 - shell thickness at mold exit 
 - metallurgical length of the caster 
 - the location down the caster where cracks initiate 
 - cooling practice below the mold to avoid reheating cracks 
 
Models such as this one showed that computations are not simply academic curiosities, but can serve as powerful tools to solve 
practical problems in the real process.  Today, it is standard practice for all models to be tested rigorously using first analytical 
solutions (to validate the internal consistency of the model and mesh refinement) and then with measurements from experiments or 
plant trials (to validate modeling assumptions, property data, and boundary conditions).  This methodology is the foundation of 
modern computational modeling.  
 

 
Figure 3.  Schematic of continuous cast steel strand, 
showing 1-D slice domain and boundary conditions5 

 
Figure 4.  Liquid pool and surface temperature profiles in the mold, 
comparing finite difference model (A) with analytical solution (C), and finite 
difference model (B) with shell thickness measured near a beam blank web6 

   
The Computer Revolution 

Advances in the silicon chip and user-friendly software have fundamentally transformed our approach to process analysis and enabled 
great leaps in the capabilities of mathematical process models.  As powerful computers now pervade almost every aspect of modern 
life, it is easy to forget how difficult computational modeling was in the early days, when Brimacombe and his colleagues were 
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writing the first finite-difference models of continuous casting.  After writing a program, it had to be typed onto punch cards, carried 
over to the computer building, and given to the computer operator.  A simple compiler error would not be spotted until walking back 
to collect results the next day.  A calculation that would today take only a few minutes on a personal computer might have been 
terminated by the mainframe operator before finishing, while burning up an entire year’s computing allocation.  Achieving meaningful 
results with these primitive tools makes the early modeling accomplishments all the more impressive. 
 
The increase in application of models to steel processing has coincided with tremendous increases in computing power.  In the four 
decades since those first models, computer processor speed has increased more than 100,000-fold, with similar increases in storage 
capacity and dramatic decreases in cost.  This has enabled the size and complexity of casting models to double every 1.5 years.9  
Today, new software is unleashing the potential of pixel-based graphics processing units (GPUs) to perform low-cost massively-
parallel calculations, which could speed up computational fluid dynamics codes by ten-fold.10 The mind-boggling magnitude of these 
advances can be illustrated by considering the impact that similar advances would have had on the auto industry.  If car manufacturing 
had increased speed, capacity, and cost efficiency to the same extent as computers have, then today’s cars should carry more than 200 
thousand passengers, travel well over one million miles per hour, and cost less than a dollar to buy.  Our increasingly powerful 
computers allow modeling to play an increasing role in advances to steel process technology.  
 

WHY MODEL? 
 
There are many different reasons to develop a process model.  These include: 
 - increase fundamental understanding of a complex process and its governing phenomena 
 - technology transfer 
 - design of experiments 
 - evaluation of alternative designs 
 - process optimization 
 - extension and evaluation of plant results 
 - extending lab measurements to quantify properties 
 - assist in scale-up 
 - online process control 
 
If a clear reason to develop a model cannot be found, then it should not be developed!  
 
 

UNDERSTANDING COMPLEX PROCESS PHENOMENA 
 
Models can be excellent educational tools.  The insights gained from careful evaluation of computational model simulations, 
visualized with 3-D graphics tools that clearly illustrate complex phenomena, often are impossible to obtain in any other way.  Even 
the act of modeling can produce mental discipline in process analysis and deepen understanding of the phenomena which govern it.  
With increased process understanding, a process engineer can make better decisions and implement improvements to processes. 
 
Ladle Refining 

Consider, for example, the ladle refining process.  Alloying additions must melt, dissolve, and mix into the bulk flow.  Additions for 
deoxidation involve even more complex phenomena, as they also react to create inclusion particles, collide with into larger particles, 
and with bubbles, that must be transported through the turbulent fluid to the slag/metal interface, where the impurities are hopefully 
absorbed and removed.  These phenomena all depend on the turbulent flow field, which in turn is governed by jet buoyancy controlled 
by the gas injection rate.  Modeling methods and insights into these phenomena have benefited from decades of contributions from 
many previous computational modelers of ladle flow, including Emi,11 Irons,12 Johansen,13 Oeters,14 Guthrie,15 and many others.16 
 
Figure 5 shows the flow pattern and gas bubble distribution computed in a 3.6m high x 2.7m diameter ladle filled with 110 tonnes of 
steel, and argon gas injected at 0.17 Nm3/min through an off-centered porous plug located 0.72m from centerline.17  The 3-D 
computational flow model solves the mass transport (continuity) and momentum balance equations in the molten steel, coupled with 
the k-ε model for turbulence, and a discrete-phase model for the bubbles and solved in FLUENT.17  The chaotic effect of turbulent 
flow on the bubble trajectories was incorporated using the random walk method. The effect of bubble shape (ranging from eccentric 
ellipsoids to spherical caps) was included using special functions for the drag coefficients.  
  
The results show that the jet of bubbles from the porous plug forms a plume that expands as it rises. The model predicts about 1,700 
bubbles (28.2mm average diameter) in the ladle under pseudo-steady state conditions, with an average dwell time of 3.4s.  The 
maximum plume velocity of ~0.8 m/s matches previous work. The plume splits into two main streams that swirl diagonally across the 
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top surface, flow down the far side, and converge towards the bottom corner on the opposite side of the porous plug. The returning 
flow pushes the plume toward the right wall, which can also be seen in the gas concentrations. 
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Figure 5.  Calculated time-averaged flow field and bubble distribution17 

 
After adding 1.82 tonnes of SiMn ferroalloy over 37s to the eye that formed directly above the plume, steel samples were collected at 
a carefully measured location near the top just outside the plume.  Equilibrium concentrations were calculated based on the steel, slag, 
and alloy compositions and the temperature.18  Model simulations of the concentration changes are shown in Figure 6, based on a two-
stage model for alloy dissolution.  At first, a layer of solid steel was assumed to freeze around each ferroalloy particle in the size 
distribution.  Although this causes their density to increase, these composite particles are mainly carried across the top of ladle while 
the steel layer grows and then melts.  Superheat is important, owing to its effect on this melting time.  The low-freezing-temperature 
alloy trapped inside is assumed to melt before its surrounding shell melts away, so the liquid is released suddenly from a region near 
the top left edge at the steel-slag interface.  This finding explains why Mn recoveries, which varied from 91% to 97%, correlated 
strongly with the oxygen potential of the slag.   
 
The computed concentration histories in Figure 7 match the behavior of the plant measurements, including its oscillating nature.  
Variations are likely caused by differences between heats, turbulent fluctuations, and sampling.  Note that both the predictions and 
measurements show an initial concentration peak that exceeds 100% well before mixing is complete.  This is due to a local region of 
solute-rich fluid that circulates around the ladle.  Thus, it is not appropriate to define mixing by the time to reach a given percentage of 
the final concentration.  A better definition of mixing time is when the normalized concentration stops varying outside of a range such 
as 95%-105%.  It is also important to carefully choose the sampling point and to examine the entire mixing curve.  
 

 
 

Figure 6.  Mixing concentration predicted in centerplane  
(time after start of ferroalloy addition)17 
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Figure 7.  Computed concentration profiles at the sampling point 
compared with plant measurements17 
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Using overall mass balance calculations, slag layer weight gain and composition changes are also calculated and agree with 
measurements.  Other practical findings from such models is that off-center plug location tends to decreases mixing times relative to a 
centered plug.  Empowered by the process understanding provided by models such as this one, plant engineers can create and 
implement improvements to the process. 
 

EXTENDING PLANT MEASUREMENTS 
 
Fundamentally-based offline computational models can be used in the interpretation of plant experiments.  In particular, they can be 
used to extract more fundamental properties from the raw measured quantities.  A common example in steel processing is the 
extraction of heat transfer coefficients and heat flux curves from the temperature measurements of thermocouples.  These heat fluxes 
enable more meaningful comparison between experimental results, because they are less specific to a particular experimental setup.   
 
Nail Board Dip Test 

Another example is the measurement of flow conditions near the surface of the continuous slab-casting mold.  Steel quality is greatly 
affected by the fluid flow pattern in the mold, which is difficult to measure, owing to the harsh environment and electrical 
interference.  The nail board dip test is a simple, yet powerful tool to characterize flow conditions near the top surface.  A row of nails 
is inserted into a long board, and dipped perpendicularly through the slag/steel inter-surface for 3-5 seconds, as shown in Figure 9.  
Upon removal, a knob of steel has solidified on the end of each nail.   
 
Nailboard measurements are commonly used to find the depth of the molten slag layer.19  This is found by affixing an aluminum wire 
alongside the nails prior to dipping, and recording the difference between the melted wire height and the solidified knob.  The profile 
of the knob heights together indicate the shape of the steel meniscus.  The profile is higher near the narrow face for double-roll flow 
patterns, due to the uplifting effect of flow up the narrow face, as pictured in Figure 8.   
 
The angular profile of the knob can be further analyzed to quantify the surface velocity profile.  The high end of the angular profile 
indicates the direction of steel flow past the nail, as shown in Figures 10-12.  Recently, Rietow used a carefully-validated 
computational model to determine a relation to correlate knob height difference, Δh, and nail diameter to surface velocity of the 
molten steel across the top of the mold.20 Knob height difference is the difference in height between the low end and the high end of 
the knob profile at the nail, as shown in Figure 11.  The model features 3-D turbulent flow in the steel coupled with laminar flow in 
the slag layer, and two free surface computations using the SPINES method in the finite-element CFD package, FIDAP.21  An 
example of the model predictions showing the knob shape is given in Figure 13, where the molten steel is flowing from the lower left.  
The calculated knob height difference varies with the nail diameter, D, the fluid densities, viscosity, and interfacial tension, so the 
interface between molten steel and the slag layer is much different than in a water model.   
 
 A compilation of the model results, illustrated in Figure 14, enables accurate, fast measurement of meniscus velocity in a plant 
setting.  The height difference is most sensitive to velocity in the important range of 0.2 – 0.5 m/s.  Within this range, height 
difference increases with increasing surface velocity and increasing nail diameter.  Excessive surface velocities lead to slag 
entrainment defects, while insufficient velocities lead to meniscus freezing and other defects.  Single-roll and unstable flow patterns 
are inferior to a stable double-roll flow pattern with an optimized, intermediate surface flow velocity.  These model results enable 
easier calibration / validation of computational models of fluid flow in the mold, in addition to helping nail board tests become a more 
powerful measurement tool. 

 
Figure 8.  Continuous casting mold 
showing steel flow, top surface slag layers, 
and location of nail-board insertion 1) 

 
 
Step 1: Insert nail through       Step 2: Hold nail in steel for     Step 3: Remove nail, and 
Slag layer into liquid pool       short time (3-5s)                        measure shape of knob 
 
Figure 9.  Nailboard method to measure steel surface speed and direction 
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Figure 10.  Flow past immersed 
column in water model 

 
 
Figure 11.  Schematic of flow variables: run-up height 
and measured knob height difference 

  
Figure 12. Nail photo showing 
measurement of solidified knob  
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Figure 13.  Model of slag / steel interface shape and vertical (z) velocity contours: 3 views (0.3 m/s; 10-mm diameter nail) 
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Figure 14.  Relation between steel surface velocity and measured height of knob from nail-board test (with slag) 
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PROCESS OPTIMIZATION WITH OFFLINE MODELS 
 
Process models are particularly useful when the phenomena of interest are very difficult to measure directly or to model physically. A 
good process model can be validated to match any measurements that are available, and then perform parametric studies to extrapolate 
the results to other locations and conditions, and help to find optimal windows of plant operation where product quality is best. 
 
Mold Flow Control with Local Electromagnetic Braking  

For example, fluid flow in a continuous casting mold can be controlled with electromagnetic forces, combined with other casting 
conditions, nozzle, and mold geometry.  Many previous computational models have been applied to this challenge.22  The effects of 
varying EMBr field strength and SEN submergence depth on fluid flow in the mold cavity have been investigated with computational 
flow models, aided with plant measurements of field strength, surface shape and velocity.23 Using the knowledge gained from the 
model and measurements together, electromagnetic forces and submergence depth can be controlled together to stabilize the fluid flow 
in the mold cavity and thereby minimize casting defects. 
 
Magnetic field contours for a localized static EMBr field (0.355T) were measured in an operating thin-slab caster at Nucor Steel in 
Decatur, AL.  This caster features a standard bifurcated two-port SEN (Figure 15) and a 90mm thick, straight, parallel mold.  Table 1 
gives the casting conditions.  A gauss meter was used to measure the magnetic field strength in the centerplane.  A typical 3-D contour 
plot is given in Figure 16.  The gray-hatched squares indicate the physical location of the magnets.  The maximum strength of 0.32T is 
centered in an oval region, which is typical of local braking.  The contour levels scale well with overall field strength. 
 
Table 1  Casting and Simulation Conditions  

Casting Speed 3.3m/min 
 Mold Width  1374mm 
Mold Thickness  90mm 
Meniscus Level Below 
Top of Mold 100mm 

Domain Width  687mm 
Domain Thickness 45mm 
Domain Length  2500mm 
ρsteel  7000 kg/m3 
ρslag  3000 kg/m3 
µ  0.006 kg/m-s 
σ  714,000(Ω-m)-1 
Gravity  9.81 m/s2 

Table 2  Parametric Study 

 SEN Depth 
(mm) 

EMBr Setting 
(T) 

Case 1 250 0 
Case 2 250 0.2525 
Case 3 250 0.355 
Case 4 300 0 
Case 5 300 0.2525 
Case 6 300 0.355 
Case 7 350 0 
Case 8 350 0.2525 
Case 9 350 0.355 

 

R12.5
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R12.5

Section A-A

25
77

45°

Figure 15.  Nozzle Geometry 
 

Figure 16.  Measured electromagnetic field contours (0.355T)  
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A standard Reynolds-Averaged Navier-Stokes model of turbulent fluid flow including electromagnetics was used to simulate the time-
averaged flow pattern in the 90-mm thick slab-casting mold with local EMBr.  The steady-state, incompressible, 3-D Navier-Stokes 
equations are solved in the nozzle and mold domain using the magnetic induction method for solving for electromagnetic force,24 and 
the standard k-ε model in FLUENT.24  The mold domain consists of the liquid pool with the solidifying shell modeled with mass and 
momentum sinks.23 The nine cases, given in Table 2, investigate the combined influences of SEN depth and field strength on the flow 
pattern.  Attention is focused on the surface velocity profile, turbulence levels, and surface level profile, which governs quality of the 
cast product.  The surface level profile is calculated from the pressure field, based on a potential energy balance.25  
 
A typical computed flow pattern (Figure 17), shows velocity vectors on the wide face centerplane, for Case 6.  The jet exiting the 
nozzle travels across the mold cavity, impinges on the narrow face, splits into upward and downward jets, creating the classic upper 
and lower recirculation zones of a double-roll flow pattern.  In the upper recirculation zone, fluid flows up the narrow face, back 
across the top surface, and down the SEN wall, to rejoin the jet exiting the nozzle.  The brake causes some of the secondary jet 
flowing up the narrow face to split off early and flow back across the mold just above the brake region, altering velocities in the upper 
recirculation region.  The lower recirculation zone is much larger and has lower velocities than the upper zone, because it is not 
confined.  The upper zone is constrained by the top surface and the jet exiting the SEN, which tends to bend the jet slightly upwards.   
 
Velocity across the top surface is compared for all nine cases in Figure 18, which shows velocity toward the SEN on a line across the 
wide-face centerplane 10mm below the meniscus.  A parabolic velocity profile is seen, with a maximum about 450mm from the mold 
center.  Increasing EMBr field strength at constant SEN depth causes a steeper downward jet angle, lower velocities, and a flatter 
meniscus profile.  Without EMBr, (and with constant field strength), surface velocity decreases with increasing SEN depth.  With 
EMBr, this trends reverses, because the jet drops below the EMBr region, and maintains its momentum.  Further details are given 
elsewhere. 
 

 
 
Figure 17.  Velocity vectors on the mold wide face 
centerplane for Case 6: outer circle shows extent of EMBr 
field, and inner circle showing region of strongest field. 
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Figure 18.  Velocity across top surface toward SEN for Table 2 cases 
 

 
After validating the model with a test problem, the results were validated by comparing with plant measurements of surface velocity 
from nail boards and meniscus shape (standing wave height) from oscillation mark profiles.  Figure 19 compares the computed surface 
velocities with nail-board test measurements using ten 7.5cm-long, 5mm-diameter nails, converted to velocities using Figure 14.  The 
numerical results match surprisingly well both near the narrow face and near the SEN.   
 
The model was also validated by comparing the simulated shape of the top surface at the meniscus with oscillation mark profiles 
across the slab, as shown in Figure 20. Oscillation mark depressions reveal the shape of the meniscus at the instant in time they 
formed.  The calculated profile roughly matches that measured from the photograph of the oscillation marks traced on a sand-blasted 
slab surface.  Both show a high wave at the narrow face that slopes downward and stabilizes about halfway across the wide face 
before sloping slightly upward near the SEN.  The average standing wave height of 4.41mm, compares well with the calculated 
average of 5.26mm.  
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Figure 19.  Comparison of calculated and experimental 
meniscus velocity 

 

 

 
Figure 20.  Comparison of calculated meniscus profile with 
oscillation marks (Case 6) 

 
This parametric study provides insight into how to best operate this particular caster for these conditions.  The local EMBr is 
beneficial, as it lowers surface velocity and flattens the meniscus profile (standing wave height).  This prevents excessive surface 
velocities, and the corresponding slag entrainment, level fluctuations, inclusions and surface defects that accompany casting without 
electromagnetics for this geometry and casting speed.  The EMBr field strength should vary with SEN depth to maintain constant 
meniscus conditions.  Optimum operation depends on the location of the EMBr field relative to the SEN port outlets.  For this caster, 
higher EMBr field strength is needed with deeper SEN submergence.   
 
 

HELP SCALE-UP FROM LAB EXPERIMENTS TO PLANT OPERATION 
 
Models are very useful in the design of new processes.  Fundamentally-based offline models can predict the differences between lab-
scale experiments and full-scale plant operation, so long as they incorporate the relevant mechanistic phenomena.  A model can help 
to help identify which process variables are most critical, or rate-limiting.  Experiments can then focus on quantifying the effects of 
just these variables.  Models can help to ensure that the crucial phenomena which govern the real process are not overlooked. 
 
Runout Table Cooling 

Taking the downstream example of hot strip cooling on a run-out table, lab experiments are needed to characterize the complex film-
boiling phenomena that govern heat transfer between the cooling water and the hot steel strip.26 The resulting heat transfer coefficients 
can then be used in online computational process models to control the water flow rates to achieve the desired coiling temperature.  
Accurate models of this process are especially important during the initial stages of open-loop model-based control, before the strip 
passes the optical pyrometers which enable true feedback-based control. 
 
In performing the lab scale experiments, it is obviously important to keep conditions as similar as possible to the full-scale plant 
operation.  Thus, the same water nozzle geometry, water flow rates, strip temperatures, steel compositions, and strip velocity should 
be used in the experiments as in the plant.  Of course, lab experiments always have some unavoidable differences with the full-scale 
plant, which must be taken into account during scale-up.  In this example, the size of the strip surface area, and the number of nozzles 
is much smaller in the lab run-out table.  These differences have important consequences that might be overlooked, without the help of 
advanced computational models.  Specifically, the greater surface area and the higher total water flow from the extra nozzles together 
make it more difficult for water to escape from the sides of the strip in the commercial operation.  This causes the water level to build 
up, which in turn lessens the impact pressure on the strip.  This causes lower heat transfer coefficients in the commercial operation, in 
spite of all other conditions being the same.   
 
This behavior has been quantified with the use of a 3-D computational model of turbulent fluid flow in the run-out table cooling 
process, including a VOF calculation of the free surface shape.26  Figure 21 compares the water levels predicted across the strip width 
by the computational model in both the small, shallow laboratory-scale model and the wide, deep commercial operation.  A water 
model constructed to investigate this aspect of the process, shown in Figure 22, confirms the accuracy of the computational model.  
Parametric studies with this model have led to a simple relation to predict the water level, Figure 22 c), thus facilitating more accurate 
scale-up to commercial operation.  Further details on this modeling investigation can be found elsewhere26 and in this proceedings. 
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Figure 21.  Water pool height comparison 
                   between stationary and moving surfaces  
                   (a) 300mm width (top view) 
                   (b) 300mm width (front view) 
                   (c) 1,200mm width 

Total Flow rate (2*Q) = 333 L/min

present simple relation

Experiment

145mm

70mm

Total Flow rate (2*Q) = 1,000 L/min

b=180mm

(a)

(b)

(c)

Total Flow rate (2*Q) = 333 L/min

present simple relation

Experiment

145mm

70mm

Total Flow rate (2*Q) = 1,000 L/min

b=180mm

(a)

(b)

(c)

 
 

Figure 22.  Comparison of water pool height 
 
 

PROCESS OPTIMIZATION WITH SEMI-ONLINE MODELS 
 
Process models can be implemented very effectively when they run efficiently and deliver useful information to the plant operator as a 
semi-online model.  The same model can also be applied by process engineers to optimize standard operating practices and other 
purposes.  The key for success is that the model be accurate, fast, and user-friendly.  To be accurate, such models must be calibrated to 
match a few key plant measurements and / or a previously-validated fundamental model.  Then, they can be applied to that specific 
plant to predict behavior for a specific set of operating conditions, or to perform parametric studies for optimization. 
 
Selecting Order Sequences to Minimize Downgrading due to Grade Transitions 

For example, a computational model of intermixing in the tundish and mold of a general continuous casting operation has been 
applied to predict and optimize casting conditions to minimize intermixing during grade changes.27, 28  The first step in predicting the 
extent of intermixing in the final product is to model the fluid flow pattern in tundish, and the corresponding transport of solute during 
a grade change when a new ladle opens.  A great deal of previous work by many modelers has been done to understand and quantify 
fluid flow and the transport of heat, solute and inclusions in different tundish designs.  These models have investigated the effect of 
tundish geometry, dams, wiers, impact pads, filters, bubble curtains, and other devices that control flow and transport.  An important 
contribution of models, such as shown by Guthrie29 and Sahai,30 is that natural convection sometimes greatly changes the flow pattern.  
This effect becomes important and must be accounted for when the modified Froude number is large. Thus, transient flow through the 
tundish can change during a heat, as steel in the ladle cools and feeds colder, denser, and heavier steel into the tundish.  Similar 
changes in flow pattern occur due to the significant density differences between different steel grades (with the same superheat). 
 
For example, Figures 23 a) and b) compare the flow velocities predicted in a typical two-chambered tundish with different inlet 
temperatures using a 3-D model of turbulent flow coupled with heat transfer.31   When tundish temperature is uniform, fluid exits the 
first chamber and travels along the bottom, quickly leaving the outlet.  The top bulk of the tundish is almost stagnant, with a slow 
counter-clockwise flow.  However, when the inlet temperature is raised 50C, (from 1548 to 15530C) the flow exiting the first chamber 
is hotter and less dense, so rises quickly upon entering the second chamber.  It flows in a clockwise pattern along the top surface and 
down the far wall, exiting the outlet with a longer residence path that is much better for floating out inclusions (Figure 23 b).  Figure 
23 c) shows the corresponding temperature field, which reveals that a temperature difference of only a few degrees is enough h) to 
cause this complete reversal of the flow pattern.    
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Figure 23 a).  Isothermal flow pattern (or high-carbon steel pouring into low-carbon steel) 

 
Figure 23 b).  Flow pattern for hot new steel flowing into a full tundish of 50C cooler steel  

(or low-carbon steel pouring into high-carbon steel) 

   
Figure 23 c).  Temperature distribution driving the flow pattern in b) 

 
Knowing the flow pattern, concentration the tundish can be computed with an uncoupled solute transport model.  For greater 
efficiency, concentration profiles leaving the tundish are computed with a simplified mixing model.27  An example is shown in Figure 
24, compared with plant measurements.   
 
Intermixing also depends on flow in mold, especially when the minimum tundish weight during the grade change is small, and the 
strand section size is large.27 Thus, similar 3-D computations of flow and solute transport in the mold have been performed. An 
example is given in Figure 25, casting red steel (C=1) into blue steel (C=0) for a flying tundish change (no tundish mixing).  Note that 
solute penetrates deep into the strand faster than the casting speed.  Combining these results with a model of shell growth, 
concentration profiles in the final product can be computed, knowing that diffusion in the solid is negligibly slow.  Figure 26 shows an 
example, with distance along the slab reported relative to the meniscus location at the time of ladle opening.  Note that the new grade 
penetrates deep into the center of the old slab (beyond +6m), while old grade persists on the surface of the new slab (beyond -6m).  
Thus, plant measurements should focus on these two critical locations when resources are limited.  Measurements over the entire 
length of the center and surface in Figure 27 confirm these predictions. 
 
The next step is to develop a faster, simpler version of the models, in order to conduct many parametric studies, and to provide an 
efficient semi-online model for plant operators.  The complete 3-D models are very expensive, considering the fully transient nature of 
the lowering and raising of tundish level during a typical transition.  These simpler mixing-box based models are calibrated and 
validated with both the 3-D models and the plant measurements, as shown in Figure 27.  To predict the locations along the strand 
where intermixing becomes excessive requires a search over all of the elements, knowing the compositions of both steel grades, and 
the customer specifications (composition tolerances) for each grade.  A stringent grade can tolerate very little intermixing with the 
second grade, such as an ultra-low carbon steel cast before a high carbon steel.  A lenient grade, on the other hand, can tolerate a great 
deal of the other grade, such as two similar grades of rebar cast in a sequence.  A user-friendly model, MIX1D, has been developed 
which incorporates all of the above functions.32  It has been implemented as a semi-online model to predict intermixing in an operating 
bloom caster. 
 
 

outlet

sample point
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Figure 24.  Concentration Evolution from the tundish 
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Figure 25.  Concentration evolution in the strand 
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Figure 26.  Composition distribution in strand (3-D model) 

 
Figure 27.  Composition distribution in strand 

 
Parametric studies with this efficient simplified model provide both general guidelines for operation, as well as specific intermixing 
lengths for a given tundish and mold operation.  Figure 28 shows an example, comparing the effect of the order when casting two 
steels with different tolerances.  The stringent grade should be cast first when there is a large tundish with a lot of intermix.28, 33 For 
small tundishes where intermixing is dominated by the mixing in the strand, the order does not matter. 
 
In general, the optimal casting conditions to minimize the intermix length for a stringent grade change is to: minimize mixing in the 
tundish, start to reduce casting speed long before ladle open, keep speed slow several minutes after ladle open, lower tundish weight at 
ladle open, (the time prior to ladle open does not matter), hold tundish weight and speed constant for several minutes after ladle open, 
ramp speed and weight up to steady state slowly, and to cast thin, narrow slabs if possible.  In contrast, the optimal conditions for 
clean steel are to maintain a large volume tundish, constant great depth (to minimize vortexing), flow control devices which maximize 
residence time and avoid short circuiting, avoiding excessive turbulence at top surface, preventing reoxidation (with an optimal slag 
layer), and ensuring free-opening ladles (to avoid open pouring).    
 
The results from this model can be used by process engineers to design standard practice during stringent grade changes which will 
minimize the amount of steel that must be downgraded due to intermixing.  When a downgrade market exists, traditional clean-steel 
practices can be applied to keep in the intermixed steel in a single slab.  Once calibrated for a particular operation, this simple model 
can be used by schedulers as an aid in optimizing sequence orders by quantifying the costs (in intermixed length) associated with 
casting dissimilar grades together.  Sometimes, it is better to simply shut down the caster and restart another sequence.   
 
Finally, and most importantly, a rigorously calibrated version of this 1-D intermixing model has been be used as a semi-online model 
by operators to indicate the optimum places to cut the strand during grade change operations, in order to minimize the amount of 
intermixed steel that must be downgraded.27, 32  
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Stringent to Lenient Transition (60-10)    Lenient to Stringent Transition (10-40) 

 
Figure 28.  Computed location of slab to downgrade, for the same composition profiles with different grade specifications 

 
 

REALTIME PROCESS CONTROL 
 
Finally, online computational models are increasingly able to implement beneficial changes into process operation on a continuous 
basis, as part of online control systems.  Fully-online models make adjustments to the process directly, without the need for operator 
interaction.  As computers become faster, however, increasingly-advanced computational models can run in real time. This is enabling 
more sophisticated, mechanistic, model-based control systems.   
 
Secondary Spray Cooling  

A recent example of online model-based control systems is found in the control of secondary cooling in continuous slab casting 
operations.34, 35  Secondary cooling presents several challenges to control.  The first challenge is to find water flow rates that maintain 
a reasonable temperature profile down the caster during steady-state casting.  With nonoptimal cooling, surface cracks can form due to 
thermal stresses caused by overcooling and subsequent reheating, or by bending or unbending while the steel surface is in a 
temperature region of low ductility.  In general, less cooling is needed at lower casting speed, owing to the inherent extra cooling time.  
However, defects will result on any portion of the strand which is overcooled or undercooled, regardless of speed.  Modern air-mist 
cooling nozzles offer the potential advantage of more uniform cooling, but introduce the extra challenge of air flow rate as another 
process variable to control.   
 
Once reasonable steady-state water and air flow rates are found for each spray zone and casting speed, many operations use simple 
“look-up” tables, to change these flow rates automatically according to the current casting speed.  However, the heat content and 
thermal resistance of the solid shell increases down the caster.  This causes slower thermal response dynamics with distance down the 
caster during speed changes.  A dynamic spray cooling system is needed to take this into account, and to adjust each spray flow rate to 
maintain the same thermal history for each portion of the strand.   
 
Conventional feedback control systems based on hardware sensors have never been successful because emissivity variations from 
intermittent surface scale and the harsh environment of the steam-filled spray chamber makes optical pyrometers unreliable.  Recently, 
computational models have been used as “software sensors” to predict the transient temperature distribution of the entire strand in real 
time, and to feed those predictions into a controller.   
 
The models in these control systems are essentially versions of the one-dimensional finite-difference models used by the early 
modeling pioneers such as Brimacombe and discussed previously.  The extra challenge is to simulate the entire temperature history of 
the strand (not just one slice), and to accomplish this in real time.  Previous online dynamic models have been applied to control the 
spray cooling of thick slab casters, including Hardin et al36 at Ipsco, Iowa, and Leehuenkilpi and coworkers using DYNCOOL, at 
Rautaruukki Oy Raahe Steel Works,37 and other unpublished models.    
 
One such model-based control system has been developed recently at the University of Illinois in collaboration with Nucor Steel in 
Decatur, Alabama.  It is being applied to control secondary cooling in their thin slab casting operation, where the high casting speeds 
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require robust execution of the entire model and control system with prediction updates every second.  The control system is shown 
schematically in Figure 29.   

 

 
a) Flow diagram 

 
 

Figure 29.  Software-sensor-based control system 
 

b) Hardware and software 
 

The core of the system is a software sensor based on the model CON1D.38  CON1D is a simple but comprehensive fundamentally-
based model of heat transfer and solidification of the continuous casting of steel slabs, including phenomena in both the mold and the 
spray regions. The accuracy of this model in predicting heat transfer and solidification has been demonstrated through comparison 
with analytical solutions and plant measurements, both in the mold and below.38  The simulation domain of CON1D is a transverse 
slice through the strand thickness that spans from the center of shell surface of the inner radius to that of the outer radius. This model 
computes the temperature and solidification history of each slice as it traverses the path from the meniscus down through the spray 
zones to the end of the caster, as shown in Fig. 30. It features a detailed treatment of the spray region, including the variation in heat 
transfer coefficients as the strand passes between individual rolls and under each row of spray nozzles. The model simulates the 
temperature drops due to heat extraction to each individual roll and by the water sprays in between, as shown in Figure 31.  Notice the 
pattern of temperature peaks and dips. The temperature dips are caused by water spray impingement and roll contact, whereas the 
temperature peaks occur where convection and radiation are the only mechanisms of heat extraction. To achieve the complete 
transient history of the entire strand, the software sensor, CONONLINE, manages multiple slices and their respective temperature 
histories, and interpolates between them.  It uses CON1D as a subroutine to compute each slice.  More detail is given elsewhere.34, 35  
 
The purpose of the software sensor is to provide a real-time estimate of the temperature of the entire outer surface of steel strand, 
based on all available casting conditions.  This is the same function that temperature sensors would perform in a traditional feedback 
control system.  The predicted shell temperature profile is averaged over each zone and compared against a preset profile of surface 
temperature profile setpoints, (Figure 30). The setpoints are selected from a database of standard operating practices which can be 
altered by the operator, and smoothed by the setpoint generator. The mismatch between the predicted temperatures and the setpoints, 
is sent to the controller to compute the water flow rates required to drive the mismatch to zero. These computed flow rates are sent to 
both the operating caster and back to the software sensor to begin the loop again for the next time interval.  
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Figure 30.  Simulation zones of the model domain from mold to 
cutoff shear. 

 
Figure 31.  Schematic of spray zone region, heat transfer 
coefficients, and corresponding surface temperature variations 
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The system hardware, Figure 31, features separate computers for the software sensor and the controller, connected through shared 
memory with the level 2 control system at the caster.  Operators interact with the system through a monitor on the casting pulpit 
desktop Windows computers. A snapshot of the monitor screen is given in Figure 32. This real-time interface displays on both the 
inside and outside radii: the predicted shell thickness profile, shell surface temperature, the zone-averaged temperature setpoints, the 
current spray-water flow rates, and other information.  In addition, operators can input new setpoints through this interface. 
 
By presenting accurate information to the operator in real time in a natural visual manner, this system empowers the operator to react 
better to unforeseen situations.  In addition to controlling surface temperature, another important objective of the system is to avoid 
costly and dangerous “whale” formation.  A whale forms when the metallurgical length extends past the last set of support rolls, and 
the internal ferrostatic pressure causes excessive bulging of the strand.  While this system was being tested on the North Caster, prior 
to giving it full automatic control, operators watching the monitor were able to recognize impending problems and avoided whale 
formation.  The South Caster, which did not have the system, experienced a whale during this time.  Ultimately, a truly “expert” caster 
control system should recognize and take appropriate action to prevent these and other problems, in addition to controlling sprays to 
maintain surface temperature. 
 

 
 

Figure 32.  Real-time monitor interface, displaying shell thickness profile, surface temperatures, setpoints, flow rates, etc. 
 
 

CONCLUSIONS 
 
This paper has offered a few examples of the different ways that computational models can be applied to implement beneficial change 
to steel processing.  These include fully-online models, semi-online models, off-line models, and literature models.  Process models 
range from empirical to mechanistic in nature and vary in complexity from simple analytical solutions to coupled, 3-D transient 
numerical simulations.  Advances in computing have enabled tremendous increases in the power of models over the years. 
 
I am humbled by the wisdom of early pioneers such as Harry Howe, who were able to understand so much using only their wits and 
powers of observation, while lacking such basic tools as the phase diagram and the computer.  Later pioneers, such as Keith 
Brimacombe taught us how to develop mathematical models, validate them with experiments and plant trials, and apply them to gain 
insight and solve practical problems.  They remind us that future advances will not come from either models, experiments, or plant 
trials.  They will come from ideas generated by people who understand the process and the problems.   
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